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Abstract. We study permutation invariant oscillator algebras and their Fock space representations using
three equivalent techniques, i.e. (i) a normally ordered expansion in creation and annihilation operators,
(ii) the action of annihilation operators on monomial states in Fock space and (iii) Gram matrices of inner
products in Fock space. We separately discuss permutation invariant algebras which possess hermitean
number operators and permutation invariant algebras which possess non-hermitean number operators.
The results of a general analysis are applied to the SM -extended Heisenberg algebra, underlying the M -
body Calogero model. Particular attention is devoted to the analysis of Gram matrices for the Calogero
model. We discuss their structure, eigenvalues and eigenstates. We obtain a general condition for positivity
of eigenvalues, meaning that all norms of states in Fock space are positive if this condition is satisfied.
We find a universal critical point at which the reduction of the physical degrees of freedom occurs. We
construct dual operators, leading to the ordinary Heisenberg algebra of free Bose oscillators. From the
Fock-space point of view, we briefly discuss the existence of a mapping from the Calogero oscillators to
the free Bose oscillators and vice versa.

1 Introduction

The classical and quantum integrable model of M in-
teracting particles on a line, introduced by Calogero [1],
has been intensively studied during the past few years.
The model and its generalizations [2] are connected with
a number of physical problems, ranging from condensed
matter physics [3] to gravity and black-hole physics [4].
The algebraic structure of the Calogero model and its
successors, studied earlier using group theoretical meth-
ods [5], has recently been reconsidered by a number of
authors in the framework of the SM -extended Heisenberg
algebra [6].

Apart from its particular realization, the SM -extended
Heisenberg algebra is basically a multi-mode oscillator al-
gebra with permutation invariance. The general tech-
niques for analyzing such a class of oscillator algebras were
developed earlier in a series of papers [7,8].

In the present paper we apply these techniques to the
Calogero model in its operator formulation. We start our
analysis with the two-body Calogero model. On the al-
gebraic grounds, this model is described by a particular
class of deformed single-mode oscillator algebras which
were treated in a unified manner in [9].
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In Sect. 2, we describe a single-mode algebra underly-
ing the two-body Calogero model. We construct a map-
ping from this algebra to the ordinary Bose algebra. We
also present the number operator N and the exchange
operator K as an (infinite) series in the creation and an-
nihilation operators. At the end of Sect. 2 we construct an
algebra that is dual to the original algebra of the two-body
Calogero model.

In Sect. 3 we discuss general multi-mode oscillator al-
gebras with permutation invariance. We describe two dis-
tinct classes of these algebras:

(i) algebras which possess well-defined hermitean num-
ber operators (i.e. transition number operators Nij ,
partial number operators Nii ≡ Ni and the total
number operator N ≡ ∑

Ni), and
(ii) algebras which possess well-defined number opera-

tors but for which only the total number operator N
is hermitean.

The analysis of these algebras is performed in three
equivalent ways: using

(i) a normally ordered expansion in creation and anni-
hilation operators,

(ii) the action of annihilation operators on monomial
states in Fock space, and

(iii) Gram matrices of scalar products in Fock space. We
conclude Sect. 3 with a discussion of the general
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structure of transition number operators Nij and ex-
change operators Kij .

The ideas developed in the preceding sections are applied
to the many-body Calogero model in Sect. 4. The algebra
underlying the many-body Calogero model (SM -extended
Heisenberg algebra) is discussed along the lines described
in Sect. 3. Special attention is devoted to the analysis of
Gram matrices and to the construction of number oper-
ators and exchange operators as an infinite series in the
creation and annihilation operators. We also find that the
SM -extended Heisenberg algebra can be defined as a gen-
eralized triple operator algebra. Generalizing the construc-
tion given in Sect. 2 to the multi-mode case, we define and
investigate the structure of dual algebras. Section 4 ends
with a short discussion of mappings from the Calogero al-
gebra to the set of free bosonic oscillators. Section 5 is a
short summary.

2 Two-body Calogero model
and deformed single-mode oscillator algebras

Particular aspects of single-mode deformed oscillator al-
gebras were studied by a number of authors, starting with
the seminal papers of [10]. A unified view of deformed
single-mode oscillator algebras was proposed in [9,11].

Basically, these algebras are generated by a set of gen-
erators G, involving annihilation (a) and creation (a†)
operators, together with the well-defined number opera-
tor N :

G := {1, a, a†, N},
(a)† = a†, N = N†.

The following commutation relations hold:

[N, a] = −a, [N, a†] = a†,

[N, a†a] = [N, aa†] = 0,

aa† − qa†a = G(N), (1)

where q ∈ R and G(N) is a hermitean, analytic function of
the number operator. The vacuum conditions are a|0〉 = 0
and N |0〉 = 0, with 〈0|0〉 = 1. Since [N, a†a] = [N, aa†] =
0, we can write

a†a = φ(N),

aa† = φ(N + 1), (2)

where φ(N) ≥ 0 is some function of the number operator.
Several examples of algebras that belong to the class (1)
and their corresponding functions φ(N) are given in [9].

Here we want to discuss a variant of the algebra (1),
with G(N) = 1 + 2νK and q = 1, namely

aa† − a†a = 1 + 2νK, ν ∈ R,

K = (−)N , Ka = −aK. (3)

In this equation K is the exchange operator (see Sects. 3
and 4) which here acts simply as a parity operator that

separates the set of excited states |n〉 ∝ a†n|0〉 into even
and odd subspaces. For ν > −1/2, the algebra (3) pos-
sesses unitary infinite-dimensional representations. This
algebra is known as the Calogero–Vasiliev algebra [6] (also
termed the deformed Heisenberg algebra with reflection
[12]) and provides an algebraic formulation of the two-
particle Calogero model [1] described by the Hamiltonian
(x and p are the relative coordinate and momentum, re-
spectively)

2H = p2 + x2 +
ν(ν − 1)

x2 K, (4)

which reduces to
2H = {a, a†} (5)

after the identification
√

2a = x + ip− ν

x
K,

√
2a† = x− ip +

ν

x
K.

Remark 1. Generalizations of the algebra (3) have been
investigated in [13,14] and its connection to nonlinear
parabosonic (parafermionic) supersymmetry has been de-
scribed in [15].

As we have already described in [7,9], the analysis of
the general (deformed) oscillator algebras could be carried
out in three completely equivalent ways.

One can express aa† as a normally ordered expansion:

aa† = 1 +
∑
k≥1

αka
†kak. (6)

Alternatively, one can start the analysis by using the ac-
tion of the annihilation operator on the states in Fock
space:

aa†m|0〉 = φ(N + 1)a†m−1|0〉. (7)

The third way is to examine the vacuum matrix ele-
ments (Gram matrix)

Am,n = 〈0|ama†n|0〉 = [φ(n)]! δmn. (8)

These approaches are rather simple for the single-mode
oscillators but become very powerful for the analysis of
multi-mode (deformed) oscillator algebras (see Sects. 3 and
4).

Now, we show how the normally ordered expansion (6)
works for the Calogero–Vasiliev algebra (3).

First, we calculate the function φ(N); it reads

φ(N) = N + ν(1 + (−)1+N ). (9)

Knowing φ(N), we recursively calculate the coefficients αk

(see (6)) for the algebra (3):

αk =
φ(k + 1) − 1 − ∑k−1

m=1 αmφ(k) · · ·φ(k + 1 −m)
[φ(k)]!

,

∀φ(k) �= 0.
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Similarly, we can expand the operators K and N in an
infinite series in the operators a and a†, i.e.

K = 1 +
∑
k≥1

βka
†kak. (10)

Using relations (3) and Ka†n|0〉 = (−)na†n|0〉, one can
recursively calculate the coefficients βk as

βk =
[(−)k − 1]
φ(k)!

−
k−1∑
m=1

βm
1

φ(m− 1)!
.

The expansion of the number operator N reads

N = a†a +
∑
n≥2

γn(a†)n(a)n, (11)

where

γn =
n− ∑n−1

k=1 γkφ(n) · · ·φ(n + 1 − k)
[φ(n)]!

.

Note that γn = 0 for φ(n) = 0, φ(n− 1) �= 0.
Notice also that, knowing αk, βk and γn, we can obtain

φ(n) from the same recurrent relation.
As we elaborated in [9], there exists a simple mapping

of the general deformed algebra (1) to the ordinary Bose
algebra [b, b†] = 1. This mapping is of the form

a = b

√
a†a
N

≡ b

√
φ(N)
N

. (12)

The inverse mapping exists if φ(N) �= 0, i.e. φ(N) > 0,
∀N . Using φ(N), and (9), associated with the algebra (3),
we obtain

a =



b, n = even,

b

√
N + 2ν
N

, n = odd.

It is also possible to map the operators a and a† to the
Bose operators b and b†, using an expansion of the form

a =


∑

k≥0

ckb
†kbk


 · b. (13)

Comparing (13) with (3), one can recursively calculate the
coefficients ck as

ck =
1
k!

[√
φ(k + 1)
(k + 1)

+
k∑

m=1

(−)k

(
k

m

)√
φ(k + 1 −m)
(k + 1 −m)

]
.

For our further purposes (see Sect. 4), it is convenient
to define a new operator ã in a sense dual to (a, a†), such
that

[ã, a†] = 1, ã|0〉 = 0. (14)

The connection is

ã = a
N

a†a
≡ a

N

φ(N)
, φ(N) > 0, ∀N, (15)

where N can be realized as in (11), or as

N =
1
2
{a†, a} −

(
ν +

1
2

)
.

Using φ(N), (9), we find

ã =



a, n = even,

a
N

N + 2ν
, n = odd.

(16)

The construction of the mapping (15) is similar to that
given in [16].

We also find

N = a†ã, N + 1 = ãa†,

and

ãa†n|0〉 = na†(n−1)|0〉, 〈0|ãma†n|0〉 = n!δmn.

In the next section we turn to general multi-mode os-
cillator algebras with permutational invariance.

3 Intermezzo: Multi-mode oscillator algebras
with permutation invariance

As we emphasized in [7,8], the analysis of the general
multi-mode (deformed) oscillator algebras is more com-
plicated and the three approaches, (6)–(8), become more
involved. Here we concentrate on permutation invariant
multi-mode oscillator algebras. Invariance on the permu-
tation group simplifies the analysis, but one still has to
distinguish between two cases. The first case are permu-
tational invariant algebras with hermitean number oper-
ators. These algebras were analyzed in [7,8]. In order to
be self-contained, in Sect. 3.1 we repeat the main points
of this analysis.

The second case are permutation invariant algebras
with non-hermitean number operators, not discussed pre-
viously. The analysis of these algebras is presented in
Sects. 3.2 and 3.3.

3.1 Permutation invariant algebras
with hermitean number operators

Let us consider a system of multi-mode oscillators de-
scribed by M pairs of creation and annihilation opera-
tors a†

i , ai (i = 1, 2, · · · ,M) hermitian conjugated to each
other. We consider operator algebras which possess the
well-defined transition number operators Nij , the partial
number operators Ni ≡ N ii and the total number opera-
tor N =

∑
Ni. We also demand that the algebras be per-

mutation invariant. In this subsection we suppose that all
number operators are hermitean, i.e. N†

i = Ni, N
†
i = Ni

and N†
ij = Nji.
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The relations involving the number operators and the
operators a†

i , ai (i = 1, 2, · · · ,M) are

[Nij , a
†
k] = δjka

†
i , [Nij , ak] = −δikaj ,

[Nij , Nkl] = δjkNil − δilNkj , [Ni, aj ] = −δijai,

[Ni, a
†
j ] = δija

†
i , [Ni, Nj ] = 0,

[N, a†
k] = a†

k, [N, ak] = −ak. (17)

In the associated Fock-like representation, let |0〉 de-
note the vacuum vector. Then, the scalar product is
uniquely defined by 〈0|0〉 = 1, and the vacuum condi-
tions are ai|0〉 = 0, aia

†
i |0〉 �= 0. A general n-particle

state is a linear combination of monomial state vectors
(a†

i1
· · · a†

in
|0〉), i1, · · · , in = 1, 2, · · · ,M . The partial num-

ber operators Ni are diagonal on the monomial states
(a†

i1
· · · a†

in
|0〉), with eigenvalues ni, counting the number

of operators a†
i in the corresponding monomial state:

Ni(a
†
i1
a†

i · · · a†
i︸ ︷︷ ︸

ni

a†
in

|0〉) = ni(a
†
i1
a†

i · · · a†
i︸ ︷︷ ︸

ni

a†
in

|0〉).

In Fock space considered, monomial states with differ-
ent total number operator N are orthogonal, as well as
the states with the same N but different partial number
operators Ni. Two states are not orthogonal if they have
the same partial number operators N1, N2, · · · , NM .

The general multi-mode oscillator algebra with her-
mitean number operators and permutation invariance can
be described in three ways [7]:

(i) as a normally ordered expansion,
(ii) as a set of relations in the Fock space and,
(iii) using Gram matrix of scalar products in Fock space.

These three approaches are independent but completely
equivalent. Moreover, as we demonstrate in the rest of
this paper, they can also be applied to the permutation
invariant algebras with non-hermitean number operators.
Which of the three approaches will be used, depends on
the nature of the problem. In the concrete example of the
Calogero model (Sect. 4) we are mainly interested in the
positivity of the norms in Fock space and in finding the
critical points. Therefore, we shall analyze the problem
using the Gram matrix.

Now, we shortly describe each of the three approaches.
In the first approach, the operator algebras are defined

by a set of relations:

aia
†
j ≡ Γij(a†, a) == δij + C1,1a

†
jai

+
∞∑

n=1

∑
π,σ∈Sn+1

Cπ,σ

M∑
k1,···,kn=1

[π(j, k1, · · · , kn)]†

× [σ(i, k1, · · · , kn)], (18)

where the operators ai are normalized in such a way that
the coefficient of the δij term is equal to 1. Several com-
ments on the structure of the above expression are in

order. Permutation invariance guarantees that the coef-
ficients in the expansion do not depend on concrete in-
dices in normally ordered monomials, but only on cer-
tain linearly independent types of permutation invariant
terms, schematically displayed above. The existence of the
number operators Ni implies that the annihilation and
creation operators appearing in a monomial in the nor-
mally ordered expansion (18) have to appear in pairs, i.e.
monomials are diagonal in the variables k1, · · · , kn (up to
permutations) [8]. The symbol [σ(i, k1, · · · , kn)] denotes
aσ(i)aσ(k1) · · · aσ(kn) ≡ σ(aiak1 · · ·akn

). Also, Cπ,σ = C∗
σ,π,

owing to the hermiticity of the operator product aia
†
i . We

consider only those relations in (18) that may allow for the
norm zero vectors, but do not allow for the state vectors
of negative norm in Fock space. The norm zero vectors
imply relations between creation (annihilation) operators.
Since these relations are consequences of (18), they need
not be postulated independently. Also, there is no need to
postulate relations [aia

†
i ] separately, since they can differ

from the relations [aia
†
j |i=j ] only in the unique function

f(N,Ni). Finally, notice that, although there are infinitely
many terms in the expansion, only finite terms are actu-
ally involved when acting on the finite monomial state in
Fock space.

In the second approach, in addition to the vacuum
relations ai|0〉 = 0, aia

†
j |0〉 = δij |0〉, one can define the

action of ai, i = 1, 2, · · · ,M , on the monomial states
(a†

i1
· · · a†

in
|0〉) through the relations

aia
†
i1

· · · a†
in

|0〉

=
n∑

k=1

δiik

∑
σ∈Sn−1

φk
σ[σ(i1, · · · , îk, · · · , in)†]|0〉, (19)

where îk denotes the omission of the creation operator
(with index ik) in all possible ways. (If the monomial
state does not contain a†

i at all, the RHS of (19) is equal
to zero.) The sum is running over all linearly indepen-
dent monomials, and the φk

σ are (complex) coefficients.
The identity φ1

id = 1 is implied by normalization in (18).
The coefficients φk

σ can be uniquely determined from Cπ,σ

and vice versa. If we write the type of monomial state
(a†

i1
· · · a†

in
|0〉) as 1ν12ν2 · · ·MνM , where ν1, ν2, · · · , νM are

multiplicities satisfying νi ≥ 0 and
∑M

i=1 νi = n, we see
that permutation invariance drastically reduces the num-
ber of independent terms in (19), i.e. from Mn+1 (for the
general algebra) to at most

n∑
k=1

k
n!

(ν1! · · · νk!)

independent terms (for the permutation invariant alge-
bra).

Example 1. States for n = 2: hermitean (Nij , Ni)

a1(a†
1)2|0〉, a1a

†
1a

†
2|0〉, a2a

†
1a

†
2|0〉.
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In the third approach, one defines the Gram matrix of
scalar products

Ain···i1;j1···jn
= 〈0|ain

· · · ai1a
†
j1

· · · a†
jn

|0〉. (20)

For the permutation invariant algebra: that it is permuta-
tion invariant means that the matrix element 〈0|aiπ(n) · · ·
aiπ(1)a

†
jπ(1)

· · · a†
jπ(n)

|0〉 does not depend on the permuta-
tion π ∈ Sn. The rank of the Gram matrix gives the num-
ber of linearly independent states in Fock space, which
is positive definite if A ≥ 0, i.e. if all eigenvalues are
non-negative. The matrix and its rank depend only on
the collection of multiplicities {ν1, · · · , νM}, which, writ-
ten in descending order, give rise to a partition of n [8].
The generic matrix (all indices different!) is of the type
n! × n!. It can be decomposed in terms of the right reg-
ular representation of the permutation group Sn [8]. All
other (non-generic) matrices are easily obtained from the
generic matrix. Their order is

n!
ν1! · · · νk!

× n!
ν1! · · · νk!

,

where
∑

νk = n.
We mention that the typical permutation invariant al-

gebras with hermitean number operators are parastatis-
tics/interpolation between parastatistics [17] and infinite
quon statistics [18]. Finally, we note that there is a sim-
ple way to unify a very large class of such permutation
invariant algebras as a triple operator algebras [19]:

[[ai, a
†
j ]q, a

†
k] = xδija

†
k + yδika

†
j + zδjka

†
i , (x, y, z) ∈ R,

(21)
which can be rewriten as [20]

aia
†
j = qa†

jai + (1 + xN)δij + yNij + zNji.

3.2 Permutation invariant algebras
with non-hermitean number operators

There exist a large class of operator algebras which pos-
sess permutation invariance but for these Ni �= N†

i and
N†

ij �= Nji (it still holds N = N†). The most important ex-
ample is the many-body Calogero model [1,6]. Generally,
in these algebras one can have ai|0〉 = 0, but aia

†
j |0〉 �= 0

for i �= j. As a rule, a non-orthogonal monomial basis ap-
pears, i.e. two monomial states with the same total num-
ber operator N but different partial number operators Ni

are not orthogonal.
The whole algebra can be obtained from one relation,

e.g. the one of a1a
†
2, and by successive application of the

permutation π ∈ SM , aπ(1)a
†
π(2) = π(a1a

†
2). The general

structure of the normally ordered expansion is

aia
†
j = c0 + [a†

jai] + [a†
jB0,1 + B†

0,1ai]

+ [B†
0,1B0,1] + [B1,1] + · · · , (22)

where

Bm,n =
M∑

k=1

(a†
k)man

k , B†
m,n = Bn,m.

The above expansion displays the SM -symmetric struc-
ture as it contains the SM -symmetric operators only. No-
tice that, although the RHS of (22) contains an equal
number of a†’s and a’s, they are not matched in pairs
any longer (cf. (18)). The general structure of the terms
in the expansion of aia

†
j in (22) (as well as the structure

of Nij , Ni and Kij ; see below) is

a†k
m Oal

n, m, n = i, j,

where (am, an) are ai or aj and O is any normally ordered
SM -invariant polynomial in the operators (a†, a). The in-
dices (i, j) appear explicitly in the expansion and all other
indices are contained implicitly in the SM -invariant oper-
ator O. Using this fact, one can uniquely define [aia

†
j |i=j ]

and this should coincide with [aia
†
i ] up to the unique

hermitean function of the operators (N,Ni, N
†
i , Nik, · · ·).

which are no longer diagonal on the monomial states (and
can change the eigenvalues of Nk for fixed total N).

Going to the Fock-space description (19), we notice
that, owing to the non-orthogonality of the monomial
states, there appear much more independent terms than
in the orthogonal case (see Example 1).

Example 2. States for n = 2: non-hermitean (Nij , Ni),

a1(a†
1)2|0〉, a2(a†

1)2|0〉, a1a
†
1a

†
2|0〉,

a2a
†
1a

†
2|0〉, a3a

†
1a

†
2|0〉.

Generally, there are at most

n∑
k=1

(k + 1)
n!

ν1! · · · νk!
,

k∑
i=1

νi = n

independent terms.
The Gram matrices Ain···i1;j1···jn are hermitean, of the

type Mn and we require all eigenvalues to be non-negative.
The matrix elements of the particular Gram matrix are
related by permutation symmetry. In the next section we
study the structure of these matrices in more detail.

3.3 Operators Nij , Ni and Kij

The transition number operators Nij can be expanded
into an infinite (normally ordered) series in creation and
annihilation operators. However, only finitely many terms
are involved when Nij acts on a finite monomial state in
Fock space.

We find that the general structure of Nij is (cf. (22))

Nij = [a†
iaj ] + [a†

iB0,1 +B†
0,1aj ] + [B†

0,1B0,1] + [B1,1] + · · ·
(23)
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The partial number operators Ni are obtained from the
above expression as Ni = Nii. Notice that N†

ij �= Nji.
The structure of the total number operator N =

∑
Ni

is

N = [B†
0,1B0,1] + [B1,1] + [B†

0,2B0,2]

+ [B†
0,2B

2
0,1] + [B†2

0,1B0,2] + [B†2
0,1B

2
0,1]

+ [B2,1B0,1] + [B†
0,1B1,2] + [B2,2] + · · · (24)

As we are interested only in the SM -symmetric struc-
ture, the coefficients in the above expressions have been
omitted. Notice that N† = N .

The exchange operators Kij , i, j = 1, 2, · · · ,M , gener-
ate the symmetric group SM . They are defined as follows:

Kij = Kji, (Kij)2 = 1, K†
ij = Kij ,

KijKjl = KjlKil = KilKij , i �= j, i �= l, j �= l. (25)

The representation of the symmetric group SM exists
on every deformed algebra of ai and a†

i (i = 1, · · · ,M) in
the following sense:

Kijaj = aiKij , Kijak = akKij ,

Kija
†
j = a†

iKij , Kija
†
k = a†

kKij , (26)

for k �= i and k �= j.
The vacuum condition is Kij |0〉 = ±|0〉, and we choose

Kij |0〉 = +|0〉.
Remark 2. Note that the following change of the definitions
in (26):

Kijaj = −aiKij , Kijak = +akKij ,

(and similarly for a†
i ), directly leads to contradiction since,

from (25) and (26), we obtain two apparently different
results:

KijKjkak = aiKijKjk,

KjkKkiak = −aiKjkKki.

The important fact is that if the algebra of the os-
cillators is permutation invariant, then the Kij operators
can be expressed similarly as N , Ni, Nij , namely as an
infinite series expansion in the creation and annihilation
operators. If the algebra is not permutation invariant, such
a representation of exchange operators may not exist. We
point out the difference between the operators Nij and
Kij . The exchange operators Kij act “globally” (and si-
multaneously) on the right on any monomial in a† and a,
interchanging indices i and j and keeping all other indices
at rest. Transition number operators Nij act “locally”,
turning only one a†

j into a†
i , at the same place where a†

j
is sitting. The action of Nij can be repeated at most nj

times, where nj counts the number of a†
j ’s in the mono-

mial. If there is only one a†
j , then we have

Nij(· · · a†
j · · ·)|0〉 = (· · · a†

i · · ·)|0〉.

Let [a†
i , a

†
j ] = 0 for i �= j. We symbolically denote the

eigenstate of Ni as (· · · a†ni

i · · · a†nj

j · · ·)|0〉. Then

Ni(· · · a†ni

i · · · a†nj

j · · ·)|0〉
= ni(· · · a†ni

i · · · a†nj

j · · ·)|0〉,
Nj(· · · a†ni

i · · · a†nj

j · · ·)|0〉
= nj(· · · a†ni

i · · · a†nj

j · · ·)|0〉,
Nij(· · · a†ni

i · · · a†nj

j · · ·)|0〉
= nj(· · · a†ni+1

i · · · a†nj−1
j · · ·)|0〉,

N
nj

ij (· · · a†ni

i · · · a†nj

j · · ·)|0〉
= nj !(· · · a†ni+nj

i · · · a†0
j · · ·)|0〉,

Nni
ji N

nj

ij (· · · a†ni

i · · · a†nj

j · · ·)|0〉
= (ni + nj)!(· · · a†nj

i · · · a†ni

j · · ·)|0〉.
We also obtain

Kij =
1

(ni + nj)!
(Nji)ni(Nij)nj

=
1

(ni + nj)!
(Nij)nj (Nji)ni , (27)

or alternatively

Kij =




(
Nij

1
Nj

)nj−ni

if ni < nj ,

1 if ni = nj ,(
Nji

1
Ni

)ni−nj

if ni > nj ,

where ni and nj again denote, respectively, the number of
a†

i and a†
j in the monomial (· · · a†

i · · · a†
j)|0〉. If [a†

i , a
†
j ] �=

0 for i �= j, there is generally no such simple relation
between Kij and Nij .

Below we give two examples of Kij operators for per-
mutation invariant algebras with hermitean number op-
erators. An example of Kij operators for permutation in-
variant algebra with non-hermitean number operators is
given in the next section.

Example 3. Heisenberg algebra of Bose oscillators bi, b
†
i ,

i = 1, · · · ,M .
Algebra:

[bi, b
†
j ] = δij , [b†i , b

†
j ] = [bi, bj ] = 0.

Number operators:

Nij = b†i bj , Ni = b†i bi, N =
M∑
i=1

b†i bi.

Exchange operators:

Kij =: e−(b†
i −b†

j)(bi−bj) :=
∞∑

k=0

(−)k

k!
(b†i − b†j)k(bi − bj)k.
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Example 4. Clifford algebra of Fermi oscillators fi, f
†
i , i =

1, · · · ,M .
Algebra:

{fi, f
†
j } = δij , {f†

i , f
†
j } = {fi, fj} = 0.

Number operators:

Nij = f†
i fj , Ni = f†

i fi, N =
M∑
i=1

f†
i fi.

Exchange operators:

Kij =: e−(f†
i −f†

j )(fi−fj) := 1 − (f†
i − f†

j )(fi − fj).

4 Application: The M -body Calogero model

The results of a general analysis of permutation invariant
multi-mode oscillator algebras with non-hermitean num-
ber operators (Sects. 3.2 and 3.3) will be now applied to
the M -body Calogero model. We also generalize several
concepts (e.g. the infinite series expansion of aia

†
j , N , Ni,

Nij , Kij and dual algebra) introduced in Sect. 2. We find,
as a particularly interesting result, the structure and the
eigensystem of the Gram matrices. The analysis of the
Gram matrices enables us to locate the universal critical
point of the M -body Calogero model at ν = −1/M .

4.1 The M -body Calogero model
and the multi-mode oscillator algebras

The M -body Calogero model, describing M identical
bosons on the line, is defined by the following Hamilto-
nian [1]:

H = −1
2

M∑
i=1

∂2
i +

1
2

M∑
i=1

x2
i +

ν(ν − 1)
2

M∑
i �=j

1
(xi − xj)2

. (28)

For simplicity, we have set �, the mass of the particles and
the frequency of harmonic oscillators equal to one. The di-
mensionless constant ν is the coupling constant (and/or
the statistical parameter) and M is the number of parti-
cles. The Hamiltonian (28) can be factorized by the the
creation and annihilation operators of the SM -extended
Heisenberg algebra [6].

Let us introduce the following analogs of the creation
and annihilation operators [6]:

a†
i =

1√
2

(−Di + xi), ai =
1√
2

(Di + xi),

where

Di = ∂i + ν

M∑
j,j �=i

1
xi − xj

(1 −Kij)

are Dunkl derivatives and Kij are exchange operators (see
(25) and (26)) generating the symmetric group SM . One
can easily check that the commutators of the creation and
annihilation operators are

[ai, aj ] = [a†
i , a

†
j ] = 0,

[ai, a
†
j ] = Aij =

(
1 + ν

M∑
k=1

Kik

)
δij − νKij . (29)

The action of Kij on a†
i and ai is given in (26).

Remark 3. The following definitions are also consistent:

Kijfj = −fiKij ,

Kijfk = −fkKij ,

and one can study the algebra defined by the anticommu-
tator {ai, a

†
j}:

{ai, a
†
j} = Aij =

(
1 + ν

N∑
k=1

Kik

)
δij − νKij , ∀i, j.

Note that {ai, aj} �= 0, if ν �= 0. Moreover, one can
show that the general form of the algebra, namely [ai,

a†
j ]q = Aij(ν), |q| ≤ 1, with the condition Kijaj = aiKij ,

(26), is equivalent to the algebra [ai, a
†
j ]q = Aij(−ν), with

the conditions Kijaj = −aiKij and Kijak = −akKij .
After performing a similarity transformation on the

Hamiltonian H (
∏M

i<j |xi − xj |−ν)H(
∏M

i<j |xi − xj |ν) we
obtain the reduced Hamiltonian H ′ which, when restricted
to the space of symmetric functions, takes the following
simple form:

H ′ =
1
2

M∑
i=1

{ai, a
†
i} =

M∑
i=1

a†
iai + E0,

[H ′, ai] = −ai, [H ′, a†
i ] = a†

i , [H ′, {ai, a
†
j}] = 0. (30)

Notice that one can define the general Hamiltonian H̄
by

H̄ =
1
2

M∑
i=1

{ai, a
†
i} = N + E0,

which is not restricted to the symmetric states only, i.e.
it acts on the states in the whole Fock space. In the space
of symmetric states, it coincides with H ′, H ′ = H̄. The
ground-state energy is E0 = (M/2)(1 + ν(M − 1)). The
Fock-space representation is defined by ai|0〉 = 0, ∀i and
Kij |0〉 = ε|0〉, ∀(i, j). As ε2 = 1, we fix ε to +1. The Fock
space is spanned by the monomials (a†n1

1 · · · a†nM

M |0〉). In
the following we analyze the full Fock space of states since

(i) we want to apply ideas from Sect. 3 to the SM -ex
tended Heisenberg algebra (29) and

(ii) we want to obtain the positivity of the physical states
as a consequence of the positivity of states in the
complete Fock space.
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Physical states are symmetric (antisymmetric) states for
the bosonic (fermionic) systems. The algebraic analysis of
the physical space of symmetric states for a two- and a
three-body Calogero model (28) is given in [21]. A gen-
eral approach to the algebra of observables and dynami-
cal symmetry algebra for the M -body Calogero model was
proposed in [22].

We point out that the algebra (29) can be defined in a
new way, without exchange operators Kij . The construc-
tion relies on the generalization of the triple operator al-
gebras (21) [19,20]. The only difference is that now the
number operators Ni and Nij are not hermitean.

Eliminating νKij = [ai, a
†
j ] for i �= j, we find

[ai, B
†
0,1] = 1, ∀i,

ai[ai, a
†
j ] = [ai, a

†
j ]aj , ∀(i, j)i �= j,

ai[aj , a
†
i ] = [aj , a

†
i ]aj , ∀(i, j), i �= j,

ak[ai, a
†
j ] = [ai, a

†
j ]ak, ∀(i, j, k)i �= j �= k �= i. (31)

(It is understood that the hermitean counterparts of these
relations also hold.) Notice that the single-mode algebra
(3) is a true triple operator algebra (21) since it can be
rewritten as [{a, a†}, a†] = 2a† and [{a, a†}, a] = −2a.

The algebra (31) is still a permutation invariant al-
gebra, but the indices on the LHS and RHS are not the
same (cf. the second and third relations in (31)). The last
relation in (31) can be written as

[ak, [ai, a
†
j ]] = 0, ∀(i, j, k), i �= j �= k �= i,

[ai, a
†
j ] = [aj , a

†
i ], ∀(i, j).

For the triple operator algebras, the Fock-space represen-
tation is defined by the two generalized vacuum conditions
(one can notice the similarity with Green’s parastatistics
[17]):

ai|0〉 = 0, ∀i,
aia

†
j |0〉 = −ν|0〉, ∀(i, j), i �= j. (32)

Under these conditions, the Fock representation is uni-
quely determined and is equivalent to the first construc-
tion, (29). However, this algebra does not depend on ν
and Kij , i.e. in the formulation of the triple operator al-
gebras, the interaction parameter ν enters only through
the vacuum condition (32).

We also obtain the consistency conditions in the Fock
representation, namely

([ai, a
†
j ])2 = ν2, [ak, ([ai, a

†
j ])2] = 0,

[ai, a
†
j ][aj , a

†
k] = [aj , a

†
k][ai, a

†
k] = [ai, a

†
k][ai, a

†
j ]. (33)

There is a simple generalization of the triple operator alge-
bra to include fermions (i.e. anticommutators) and quons
(i.e. q-commutators).

4.2 Gram matrices for the Calogero model

In the rest of this section, we discuss the Calogero model in
the framework of the three approaches proposed in Sect. 3.
Special attention is given to the Gram matrix approach.

In the first approach we express aia
†
j as a normally

ordered expansion:

aia
†
j = −νKij + a†

jai, ∀(i, j), i �= j,

aia
†
i = 1 + a†

iai + ν
∑
l,l �=i

Kil. (34)

This is obviously a permutation invariant algebra. We can
write it in the form of (22) if we know the expansion of
Kij in terms of ai and a†

j (and vice versa). Later we shall
give such a construction.

In the second approach we have to know the action of
ai on the monomial states (a†n1

1 · · · a†nM

M |0〉) in the Fock
space.

For the one-particle states (a†
i |0〉), using ai|0〉 = 0, ∀i,

we find

aia
†
j |0〉 =

{
−ν|0〉, i �= j,

(1 + (M − 1))|0〉, ∀i = j.

For the two-particle states (a†
ia

†
j |0〉 ) we find

aia
†
j1
a†

j2
|0〉 = [Aij1a

†
j2

+ a†
j1
Aij2 ]|0〉.

There are only four types of relations, owing to [a†
j1
, a†

j2
] =

0:

a1(a†
1)2|0〉 = (ν(M − 2) + 2)a†

1|0〉 + νB†
0,1|0〉,

a1(a†
2)2|0〉 = −ν(a†

1 + a†
2)|0〉,

a1a
†
1a

†
2|0〉 = (ν(M − 2) + 1)a†

2|0〉,
a1a

†
2a

†
3|0〉 = −ν(a†

3 + a†
2)|0〉.

For the three-particle states (a†
ia

†
ja

†
k|0〉) we find

aia
†
j1
a†

j2
a†

j3
|0〉 = [Aij1a

†
j2
a†

j3
+ a†

j1
Aij2a

†
j3

+ a†
j1
a†

j2
Aij3 ]|0〉.

There are seven types of relations:

a1(a†
1)3|0〉 = (ν(M − 3) + 3)a†2

1 |0〉
+ν(a†

1B
†
0,1 + B†

0,2)|0〉,
a1(a†

2)3|0〉 = −ν(a†
1a

†
2 + a†2

1 + a†2
2 )|0〉,

a1(a†
1)2a†

2|0〉 = (ν(M − 2) + 2)a†
1a

†
2|0〉

−νa†2
2 |0〉 + νa†

2B
†
0,1|0〉,

a1a
†
1(a†

2)2|0〉 = (ν(M − 2) + 1)a†2
2 |0〉 − νa†

1a
†
2|0〉,

a1a
†
1a

†
2a

†
3|0〉 = (ν(M − 3) + 1)a†

2a
†
3|0〉,

a1(a†
2)2a†

3|0〉 = −ν(a†
2a

†
3 + a†2

2 + a†
1a

†
3)|0〉,

a1a
†
2a

†
3a

†
4|0〉 = −ν(a†

2a
†
3 + a†

2a
†
4 + a†

3a
†
4)|0〉.
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It is a simple task to generalize these equations to an
arbitrary multi-particle state, i.e. ((a†

1)n1 · · · (a†
M )nM )|0〉):

a1(a†
1)n1(a†

2)n2 · · · (a†
M )nM )|0〉 ≡ a1|n1;n2; · · ·nM 〉

= n1|n1 − 1;n2;n3; · · ·nM 〉

+νsgn(n1 − n2)
|n1−n2|∑

k=1

|min(n1, n2)

+k − 1; max(n1, n2) − k;n3; · · ·nM 〉

+νsgn(n1 − n3)
|n1−n3|∑

k=1

|min(n1, n3)

+k − 1;n2; max(n1, n3) − k; · · ·nM 〉 + · · ·

+νsgn(n1 − nM )
|n1−nM |∑

k=1

|min(n1, nM )

+k − 1;n2; · · · ; max(n1, nM ) − k〉. (35)

We use these formulas in the constructing of the Gram
matrices for different M (the third approach).

Now we easily obtain the structure of the matrix ele-
ments of the Gram matrices 〈0|ain

· · · ai1a
†
j1

· · · a†
jn

|0〉. We
explicitly give several examples (for M = 2, 3) in the ap-
pendix and below we discuss eigenvalues and eigenvectors
of Gram matrices corresponding to one- and two-particle
states for any M .

(1) One-particle states (a†
i |0〉, i = 1, 2, · · · ,M): The ma-

trix of one-particle states is of order M and has only two
distinct entries: −ν and 1 + ν(M − 1). Its eigenvalues and
typical eigenvectors are written in Table 1.

The positivity condition implies that all eigenvalues
should be positive, meaning 1 + Mν > 0 or ν > −1/M .

(2) Two-particle states (a†
ia

†
j |0〉, (i, j) = 1, 2, · · ·M): The

matrix of two-particle states is of order M2 and has four
distinct entries of the form

〈0|a2
1(a†

1)2|0〉 = a,

〈0|a2
1(a†

2)2|0〉 = 〈0|a2
1a

†
2a

†
3|0〉 = 〈0|a1a2a

†
3a

†
4|0〉 = b,

〈0|a2
1a

†
1a

†
2|0〉 = 〈0|a1a2a

†
1a

†
3|0〉 = c,

〈0|a1a2a
†
1a

†
2|0〉 = d,

where a = [1 + ν(M − 1)][2 + ν(M − 1)] − ν2(N − 1),
b = −ν − ν2(M − 2), c = 2ν2 and d = [1 + ν(M − 1)][2 +
ν(M − 2)].

Its eigenvalues and typical eigenvectors are written in
Table 2.

Here, B0,1 =
∑

i ai and B0,2 =
∑

i a
2
i . Note that null-

eigenstates are identically equal to zero owing to the com-
mutation relation [a†

i , a
†
j ] ≡ 0, which is satisfied by ∀(i, j).

The positivity condition implies again that all non-zero
eigenvalues are positive, which is satisfied if 1 + Mν > 0,
i.e. ν > −1/M .

One can show that the same condition for the positiv-
ity of the eigenvalues for three and more particle states
also holds. There is a universal critical point, ν = −1/M ,
at which all matrix elements of an arbitrary multi-state

Table 1.

Eigenvalue Degeneracy Eigenvector Comments

1 1 B†
0,1|0〉

1 + Mν M − 1 (a†
1 − a†

i )|0〉 i �= 1

Gram matrix are equal to (k!/Mk), where k denotes a k-
particle state. This can be proved by induction and here
we sketch the proof.

The generic Gram matrix is of type (Mk × Mk). At
the critical point ν = −1/M we find

Aij ≡ 〈0|aia
†
j |0〉 =

1
M

,

Ai2i1;j1j2 ≡ 〈0|ai2ai1a
†
j1
a†

j2
|0〉

= Ai1j1〈0|ai2a
†
j2

|0〉 + Ai1j2〈0|ai2a
†
j1

|0〉
=

2
M2 ,

...
Aik···i1;j1···jk

≡ 〈0|aik
· · · ai1a

†
j1

· · · a†
jk

|0〉
= Ai1j1〈0|aik

· · · ai2a
†
j2

· · · a†
jk

|0〉
+ Ai1j2〈0|aik

· · · ai2a
†
j1
a†

j3
· · · a†

jk
|0〉 + · · ·

+ Ai1jk
〈0|aik

· · · ai2a
†
j1

· · · a†
jk−1

|0〉

= k
1
M

〈0|aik
· · · ai2a

†
j2

· · · a†
jk

|0〉 =
k!
Mk

.

The rank of this matrix is one. There is only one state,
namely B†k

0,1|0〉, which corresponds to the center of mass
and has positive norm. The corresponding eigenvalue is
(k!/Mk)Mk = k!. All other eigenstates are null-states
with zero norm. Diagonal matrix elements are larger than
(k!/Mk) if ν > −1/M and the positivity conditions for
eigenvalues are satisfied.

Remark 4. The critical point is universal in the sense that
all algebras of the form [ai, a

†
j ]q = Aij(ν), |q| ≤ 1 have the

same critical point ν = −1/M . The case q = −1, for which
the algebra takes a fermionic form, is of special interest:

{fi, f
†
j } = Aij , {F, F †} = M,

{fi, F
†} = 1, F 2 = F †2 = 0.

Here, F =
∑

fi. It follows that the one-particle Gram
matrix for q = −1 is the same as for q = 1:


1 + ν(M − 1) −ν · · · −ν

−ν 1 + ν(M − 1) · · · −ν
· · · · · · · · · · · ·
−ν −ν · · · 1 + ν(M − 1)


 .

The matrices for two- and many-particle cases depend
on q and will be treated in separate paper. It appears that
ν = −1/M could be interpreted as a physically interesting
point [23]. At this point, the Fock space reduces to the
Fock space of a single harmonic oscillator, corresponding
to the centre-of-mass coordinate.
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Table 2.

Eigenvalue Degeneracy Eigenvector Comments

0 M(M − 1)/2 [a†
i , a

†
j ]|0〉 ∀(i, j), i �= j

2(1 + Mν) M ({a†
i , B

†
0,1} − 2B†

0,2)|0〉 ∀i, M ≥ 2
(1 + Mν)(2 + Mν) M − 1 ({(a†

i − a†
1), B

†
0,1} − M(a†2

i − a†2
1 ))|0〉 i �= 1;M ≥ 3

2(1 + Mν)(1 + ν(M − 1)) M(M − 3)/2 {(a†
i − a†

j), (a
†
k − a†

l )}|0〉 (i �= j �= k �= l)

4.3 Operators Nij , Ni, N and Kij

Now, we proceed to the construction of Nij , Ni, N and
Kij operators. This construction can be performed for any
M but, for simplicity, we present the results for the first
non-trivial case M = 3. All these constructions exist only
if the positivity condition, ν > −1/M , is satisfied. For
M = 3, ν > −1/3. The construction starts with expanding
the corresponding operator in a series in ai and a†

i ; for
example (indices are omitted for brevity),

Kij = c0 +
∑

c1a
†a +

∑
c2a

†a†aa + · · · (36)

Using the definitions (25) and (26), we act with (36) on
the vacuum (which gives c0 = 1), then on the one-particle
state, the two-particle state, etc. In this way, we obtain
linear recursive relations which are easily solved. The re-
sult for K12 and M = 3 is

K12 = 1 − 1
(1 + 3ν)

b†12b12 +
1

2(1 + 3ν)2
b†212b

2
12

− ν

2(1 + 3ν)2(2 + 3ν)
b†12b

†
123b12b123 + · · · , (37)

where b12 = a1−a2 and b123 = a1+a2−2a3. One gets K13
and K23 from K12 using permutation invariance. Knowing
Kij , one can find a normally ordered expansion aia

†
j .

Similarly, one finds (M = 3)

N1 =
1

(1 + 3ν)
a†
1a1 +

ν

(1 + 3ν)
a†
1B0,1

− ν

4(1 + 3ν)(2 + 3ν)
a†
1b

†
231b

2
23

− ν(1 + ν)
4(1 + 3ν)2(2 + 3ν)

a†
1b

†
231b

2
231

− ν

2(1 + 3ν)2(2 + 3ν)
a†
1b

†
23b23b231 + · · · (38)

Here, b23 = a2 − a3 and b231 = a2 + a3 − 2a1. N12 is easy
to obtain from the above formula. Note that N†

1 �= N1.
Similarly, N†

12 �= N21. However, the total number operator
N is hermitean, N† = N , and for M = 3:

N =
1

(1 + 3ν)

3∑
i=1

a†
iai +

ν

(1 + 3ν)

(
3∑

i=1

a†
i

)(
3∑

i=1

ai

)

+
ν

(1 + 3ν)2(2 + 3ν)

3∑
i<j=1

(a†
i − a†

j)2(ai − aj)2

+
2ν2

(1 + 3ν)2(2 + 3ν)


 3∑

i=1

a†2
i −

3∑
i<j=1

a†
ia

†
j




×

 3∑

i=1

ai −
3∑

i<j=1

aiaj




≡ 1
(1 + 3ν)

B1,1 +
ν

(1 + 3ν)
B†

0,1B0,1

+
ν

(1 + 3ν)2(2 + 3ν)

×
{

2ν
[

3
2
B†

0,2 − 1
2
B†2

0,1

] [
3
2
B0,2 − 1

2
B2

0,1

]
+ 3B2,2 + B†

0,2B0,2 − 2(B2,1B0,1 + h.c.)

+ 2
3∑

i=1

a†
iB1,1ai

}
. (39)

The result is consistent with the general expression H̄ −
E0 = (1/2)

∑
i{ai, a

†
i} − E0 = N . In the limit ν → 0,

we reproduce the standard result N =
∑

i a
†
iai. Although

the above expressions seem to be divergent at the criti-
cal point, it appears that for ν = −1/3, the degrees of
freedom, the Fock space and the related algebra are sub-
stantially reduced [23] and the above expansions are com-
pletely regular, giving N = (1/3)B†

0,1B0,1 at ν = −1/3.

4.4 Dual operators ãi and dual algebra Ã

Owing to the fact that [ai, aj ] = 0 and [a†
i , a

†
j ] = 0,

∀(i, j), we can define the operators ãi, i = 1, 2, · · · ,M ,
ν > −1/M , such that

ãi(a
†
i1

· · · a†
im

|0〉) =
m∑

α=1

δiiα
a†

i1
· · · â†

iα
· · · a†

im
|0〉,

ãi|0〉 = 0, (40)

where the hat denotes omission of the corresponding op-
erator.

The sum on the RHS contains mi terms. We find that

ãi(a
†m1
i1

· · · a†mi

i · · · a†mM

iM
|0〉)

= mi(a
†m1
i1

· · · a†mi−1
i · · · a†mM

iM
|0〉)

and
[ãi, a

†
j ] = δij , [ãi, ãj ] = 0, ∀(i, j). (41)
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These relations are satisfied on all monomial states in Fock
space. If we define a dual Fock space, spanned by mono-
mials (〈0|ãi1 · · · ãiM

), we obtain the following relation, as
a consequence of (41):

〈0|ãm̃1
i1

· · · ãm̃M
iM

a†m1
i1

· · · a†mM

iM
|0〉 =

M∏
k=1

nk!δmkm̃k

We call the operators ãi the bosonic duals of the operators
a†

i .
The transition number operators Nij , the partial num-

ber operators Ni and the total number operator N can
now be expressed as

Nij = a†
i ãj , ∀(i, j),

Ni = a†
i ãi, ∀i,

N =
M∑
i=1

a†
i ãi, ∀i.

From the expression for Nij we obtain ãj and vice
versa. Symbolically,

ãj = aj +
∑
k≥1

a†kak+1.

For example, for M = 3 we find

ãi =
1

(1 + 3ν)
ai +

ν

(1 + 3ν)
B0,1

− ν

4(1 + 3ν)(2 + 3ν)
b†kjib

2
kj

− ν(1 + ν)
4(1 + 3ν)2(2 + 3ν)

b†kjib
2
kji

− ν

2(1 + 3ν)2(2 + 3ν)
b†kjbkjbkji + · · · ,

where bkji = (ak − ai) + (aj − ai) and bkj = (ak − aj).
Hence, we obtain new families of commuting operators
ãi(ν), i = 1, 2, · · · ,M and ν > −1/M . They satisfy a new
commutation relation:

[ãi(ν), ãj
†(ν)] = Ãij(ν),

and we call this the algebra Ã(ν) dual to the algebra of
(29). Of course, [ãi(µ), ãj(ν)] �= 0 for ν �= µ (as [ai(µ),
aj(ν)] �= 0 for ν �= µ).

The definition and structure of the algebra dual to a
general algebra of the ai and a†

i operators is an interest-
ing problem. Its physical meaning is connected with the
construction of new models which are dual to the initial
one.

4.5 Mapping to free Bose oscillators

It was found that the M -body Calogero model in the har-
monic potential (28) could be mapped to M ordinary free
Bose oscillators [24]. The mapping was performed in the

coordinate space (not in the Fock space) and no restriction
on ν was found or discussed. Since the whole Fock space
(spanned by the monomials a†m1

i1
· · · a†mM

M |0〉) for the M -
body Calogero model with ν > −1/M is isomorphic to
the Fock space of M free Bose oscillators with ν = 0, we
conclude that there must exist a regular mapping from
(ai, a

†
i ) to (bi, b

†
i ) and vice versa. To ensure the existence

of the mapping a = Ψ(b, b†), the following relations have
to be satisfied:

[a†
i , a

†
j ] = [ai, aj ] = 0,

[Ni, a
†
j ] = δija

†
i , ∀(i, j). (42)

The sufficient condition for the existence of the inverse
real mapping b = Ψ−1(a, a†) is ν > −1/M .

Our results on mappings can be generalized in the fol-
lowing way. If two algebras of operators, e.g. (ai, a

†
i ) and

(bi, b
†
i ), have completely isomorphic Fock spaces (i.e. the

same structure for all Gram matrices), then there exists a
regular, real mapping from ai to bi and vice versa. If one
Fock space is isomorphic with a subspace of the second
Fock space, then there exists the mapping a = Ψ(b, b†),
but there is no inverse mapping. The construction of the
mapping for Calogero operators ai, i = 1, · · · ,M , see (29),
will be considered in a separate publication.

5 Conclusion

In conclusion, we want to point out the main results of
this paper. In Sect. 2 we have applied the general results
of [9] to the Calogero–Vasiliev single-mode oscillator al-
gebra (3), underlying the two-body Calogero model. We
have expressed the number operator N , see (11), and the
exchange operator K, see (10), as an infinite series in the
creation and annihilation operators and have recursively
calculated the coefficients of expansion. We have found the
mapping (13) from Calogero–Vasiliev oscillators (a, a†) to
the Bose oscillators (b, b†). The mapping has the form of
an infinite series in (b, b†). Finally, we have defined new
operators (ã, ã†) which are dual to the operators (a, a†)
in the sense that [ã, a†] = 1. We have found a connection
between the operators a, ã and b; see (12), (15) and (16).

Section 3 is devoted to the generalization of the single-
mode oscillator algebras to the multi-mode case. We have
discussed two distinct classes of multi-mode oscillator al-
gebras:

(i) permutation invariant algebras with hermitean num-
ber operators and

(ii) permutation invariant algebras with non-hermitean
number operators.

The class (ii) has not been discussed previously and in
Sect. 3.2 several new results for those algebras were given.
Both classes have been treated in three completely equiv-
alent ways, first proposed in [7]. In the analysis, we have
used concepts of a normally ordered expansion (18), the
action of annihilation operators on the states in Fock space
(19) and the notion of Gram matrices of scalar products
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in Fock space (20). We have found the general structure
of the number operators, (23) and (24), and the exchange
operators, (25)–(27). The results of this section have been
applied in Sect. 4 to the SM -extended Heisenberg algebra
(29), underlying the M -body Calogero model. While the
previous analyses of this algebra were performed mainly
on the symmetric (or antisymmetric) subspace of the
whole Fock space [6], here we have analyzed the whole
Fock space of states. Our main results are the following.

We have rewritten the SM -extended Heisenberg alge-
bra in the form of the (generalized) triple operator algebra
(31). This is a generalization of the known result for the
single-mode case (3). Then, we have found the action of
annihilation operators on the monomials in Fock space
(35). Using this, we have calculated one- and two-particle
Gram matrices and discussed their structure and eigensys-
tem. We have found that there exists a universal critical
point in Fock space, given by ν = −1/M , and all states
in Fock space have positive norms for ν > −1/M . As we
commented in Remark 4, the same critical point exists for
a large class of SM -extended Heisenberg algebras. Then,
we have proceeded with the construction of number op-
erators and exchange operators. We have given explicit
examples of the structure of these operators in the case of
M = 3, (37)– (39). Generalizing the construction of the
dual algebra from Sect. 2, we have defined a dual multi-
mode algebra in terms of the operators (ãi, ã

†
i ), (40) and

(41). With these operators, we have been able to write
the number operators in a compact form. Finally, we have
briefly discussed the existence of a mapping from the SM -
extended Heisenberg algebra (29) to Bose oscillators.

We note that the Calogero model has been related [25]
to q-deformed quantum mechanics [26]. The ideas pre-
sented here may help in elucidating the connection be-
tween algebraic structures arising from the deformation
of the phase space of ordinary quantum mechanics and
Calogero-type models.
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A Appendix

Here, we give two examples of complete Gram matrices
for M = 2 and M = 3 oscillators and two-particle states.

ExampleA.1. The Gram matrix for M = 2. The matrix is
written in the basis {a†2

1 |0〉, a†2
2 |0〉, a†

1a
†
2|0〉, a†

2a
†
1|0〉}:


a b b b

b a b b

b b d d

b b d d


 ,

where a = 2 + 3ν, b = −ν and d = 1 + ν.

ExampleA.2. The Gram matrix for M = 3. The matrix is
written in the basis {a†2

1 |0〉, a†2
2 |0〉, a†2

3 |0〉, a†
1a

†
2|0〉, a†

1a
†
3|0〉,

a†
2a

†
3|0〉, a†

2a
†
1|0〉, a†

3a
†
1|0〉, a†

3a
†
2|0〉}.



a b b b b c b b c

b a b b c b b c b

b b a c b b c b b

b b c d b b d b b

b c b b d b b d b

c b b b b d b b d

b b c d b b d b b

b c b b d b b d b

c b b b b d b b d



,

where a = 2 + 6ν + 2ν2, b = −ν − ν2, c = 2ν2 and
d = 1 + 3ν + 2ν2.

It is straightforward to write two-particle Gram matri-
ces for any M . Non-zero matrix elements are of the type
((i, j, k, l) = 1, 2, · · · ,M)

〈0|a2
i a

†2
i |0〉 ≡ a = [1 + ν(M − 1)][2 + ν(M − 1)]

− ν2(M − 1),

〈0|a2
i a

†2
j |0〉 = 〈0|aiaja

†2
i |0〉 = 〈0|aiaja

†2
j |0〉

= 〈0|aiaja
†
ka

†
j |0〉 = 〈0|aiaja

†
ia

†
k|0〉

≡ b = −ν − ν2(M − 2),

〈0|aiaja
†2
k |0〉 = 〈0|aiaja

†
ka

†
l |0〉 ≡ c = 2ν2,

〈0|aiaja
†
ia

†
j |0〉 ≡ d = [1 + ν(M − 1)][1 + ν(M − 2)].

It is understood that different indices are not equal.
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